Structure coefficients of the Hecke algebra of (S2n,Bn)

نویسنده

  • Omar Tout
چکیده

The Hecke algebra of the pair (S2n,Bn), where Bn is the hyperoctahedral subgroup of S2n, was introduced by James in 1961. It is a natural analogue of the center of the symmetric group algebra. In this paper, we give a polynomiality property of its structure coefficients. Our main tool is a combinatorial universal algebra which projects on the Hecke algebra of (S2n,Bn) for every n. To build it, we introduce new objects called partial bijections. Résumé. L’algèbre de Hecke de la paire (S2n,Bn), où Bn est le sous-groupe hyperoctaédral de S2n, a été introduite par James en 1961. C’est un analogue naturel du centre de l’algèbre du groupe symétrique. Dans ce papier, on donne une propriété de polynomialité de ses coefficients de structure. On utilise une algèbre universelle construite d’une facon combinatoire et qui se projette sur toutes les algèbres de Hecke de (S2n,Bn). Pour la construire, on introduit de nouveaux objets appelés bijections partielles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Schur's Q-functions and the Primitive Idempotents of a Commutative Hecke Algebra*

Let Bn denote the centralizer of a fixed-point free involution in the symmetric group S2n. Each of the four one-dimensional representations of Bn induces a multiplicity-free representation of S2n, and thus the corresponding Hecke algebra is commutative in each case. We prove that in two of the cases, the primitive idempotents can be obtained from the power-sum expansion of Schur's Q-functions, ...

متن کامل

Specht filtrations and tensor spaces for the Brauer algebra

Let m,n ∈ N. In this paper we study the right permutation action of the symmetric group S2n on the set of all the Brauer n-diagrams. A new basis for the free Z-module Bn spanned by these Brauer n-diagrams is constructed, which yields Specht filtrations for Bn. For any 2m-dimensional vector space V over a field of arbitrary characteristic, we give an explicit and characteristic-free description ...

متن کامل

On complete functions in Jucys-Murphy elements

The problem of computing the class expansion of some symmetric functions evaluated in Jucys-Murphy elements appears in different contexts, for instance in the computation of matrix integrals. Recently, M. Lassalle gave a unified algebraic method to obtain some induction relations on the coefficients in this kind of expansion. In this paper, we give a simple purely combinatorial proof of his res...

متن کامل

On the irreducibility of the complex specialization of the representation of the Hecke algebra of the complex reflection group $G_7$

We consider a 2-dimensional representation of the Hecke algebra $H(G_7, u)$, where $G_7$ is the complex reflection group and $u$ is the set of indeterminates $u = (x_1,x_2,y_1,y_2,y_3,z_1,z_2,z_3)$. After specializing the indetrminates to non zero complex numbers, we then determine a necessary and sufficient condition that guarantees the irreducibility of the complex specialization of the repre...

متن کامل

0 Ju n 19 98 Weights of Markov Traces on Hecke Algebras ∗

We compute the weights, i.e. the values at the minimal idempotents, for the Markov trace on the Hecke algebra of type Bn and type Dn. In order to prove the weight formula, we define representations of the Hecke algebra of type B onto a reduced Hecke Algebra of type A. To compute the weights for type D we use the inclusion of the Hecke algebra of type D into the Hecke algebra of type B. Introduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013